kategorije

space shuttle fantasy

top-fuel dragster can accelerate from zero to 160 kilometres per hour (99 mph) in 0.86 seconds. This is a horizontal acceleration of 5.3 g. Combined with the vertical g-force in the stationary case the Pythagorean theorem yields a g force of 5.4 g. The human body is flexible and deformable, particularly the softer tissues. A hard slap on the face may briefly impose hundreds of g locally but not produce any real damage; a constant 16 g for a minute, however, may be deadly. When vibration is experienced, relatively low peak g levels can be ... več top-fuel dragster can accelerate from zero to 160 kilometres per hour (99 mph) in 0.86 seconds. This is a horizontal acceleration of 5.3 g. Combined with the vertical g-force in the stationary case the Pythagorean theorem yields a g force of 5.4 g.
The human body is flexible and deformable, particularly the softer tissues. A hard slap on the face may briefly impose hundreds of g locally but not produce any real damage; a constant 16 g for a minute, however, may be deadly. When vibration is experienced, relatively low peak g levels can be severely damaging if they are at the resonance frequency of organs and connective tissues.
. enabled by poor brain hydration

Feeding the Brain for Academic Success: How Nutrition and Hydration Boost Learning
Within your student's brain, a biochemical process of learning is occurring, that parallels the classroom experience. Making connections, finding meaning, and solving problems are learning tasks that require lightning-fast electrical impulses between areas of the brain.





It's 8:35. Your chalk is in hand and you're ready to start your day. You have carefully constructed a learning experience of visual input, hands-on activities, reading and experimentation - to help your students learn.
When you look around your room, do you see bright eyes and positive, expectant expressions, or do you see squirming, sleeping, or distracted students. What happens to your classroom mid-morning? Mid-afternoon? Do you have students who are stressed, depressed and anxious? According to experts, the internal environment of the brain is an integral part of learning, just as important as the classroom environment. You may find in some cases your students are not able to learn due to poor nutrition or inadequate hydration.

Within your student's brain, a biochemical process of learning is occurring, that parallels the classroom experience. Making connections, finding meaning, and solving problems are learning tasks that require lightning-fast electrical impulses between areas of the brain. Formation of memory requires physical growth and reshaping of networks of brain cells. So that wonderful experience - when the lights go on and your student says, "I get it!" - is a neurochemical process as well as an academic one. By nourishing the brain with healthy food and water, you will optimize the internal environment, enabling students to truly engage in the classroom environment and achieve their potential.



What does the brain need?

Place two fists together, with your inner wrists touching. Your brain is about this size and shape. In contrast to the rubbery pink models we have seen, the brain is amazingly soft, composed primarily of fat and water. It is grayish and pudding-like - composed of 100 billion brain cells - called neurons, that drive our thinking, learning, feeling and states of being. Neurons need good fats, protein, complex carbohydrates, micronutrients - vitamins, minerals and phytonutrients - and water. These nutrients are used to drive the learning functions of neurons.


Neurons connect


Neurons are shaped somewhat like an outstretched hand, with fingers spread. Dendrites (fingers) receive information from other neurons, which is then sent through the axon (arm) to another neuron. The connection between two cells is called a synapse, where the dendrite of one cell nearly touches the body or axon of another cell. Neurons can connect multiple times with the same cell, grow extensions to connect with distant cells, and connect with many different cells at once by growing more dendrites. The brain is dynamic, responsive, and efficient: new connections will be made to record and integrate new information learned. Old, unused connections will be pruned away. This process of building and pruning is not confined to the time of the classroom experience, but continually evolves with all learning that occurs in a child's life, integrating what is learned within and outside the classroom, integrating life's experiences into the knowledge base and personality of the child. The raw material for building and pruning of these connections comes from the food we eat. manj

Znanje ogledov 525 dodan 30. 06. 2014

Komentarji 0

če želiš komentirati, se


stalna povezava



koda s predvajalnikom



Vpiši email osebe, ki ji želiš priporočiti ogled videa.


Za nadaljevanje se prijavi

Za prijavo uporabi Facebook

Facebook prijava

Za prijavo uporabi geslo

Samodejna prijava



pozabljeno geslo včlanitev